Fundamental data on the desorption of pure interstellar ices

نویسندگان

  • Wendy A. Brown
  • Amandeep S. Bolina
چکیده

The desorption of molecular ices from grain surfaces is important in a number of astrophysical environments including dense molecular clouds, cometary nuclei and the surfaces and atmospheres of some planets. With this in mind, we have performed a detailed investigation of the desorption of pure water, pure methanol and pure ammonia ices from a model dust-grain surface. We have used these results to determine the desorption energy, order of desorption and the pre-exponential factor for the desorption of these molecular ices from our model surface. We find good agreement between our desorption energies and those determined previously; however, our values for the desorption orders, and hence also the pre-exponential factors, are different to those reported previously. The kinetic parameters derived from our data have been used to model desorption on time-scales relevant to astrophysical processes and to calculate molecular residence times, given in terms of population half-life as a function of temperature. These results show the importance of laboratory data for the understanding of astronomical situations whereby icy mantles are warmed by nearby stars and by other dynamical events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative studies of O2 and N2 in pure, mixed and layered CO ices.

We present laboratory data on pure, layered and mixed CO and O2 ices relevant for understanding the absence of gaseous O2 in space. Experiments have been performed on interstellar ice analogues under ultra high vacuum conditions by molecular deposition at 14 K on a gold surface. A combination of reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) is u...

متن کامل

Glycolaldehyde, methyl formate and acetic acid adsorption and thermal desorption from interstellar ices

Wehave undertaken a detailed investigation of the adsorption, desorption and thermal processing of the astrobiologically significant isomers glycolaldehyde, acetic acid andmethyl formate. Here, we present the results of laboratory infrared and temperature programmed desorption (TPD) studies of the three isomers from model interstellar ices adsorbed on a carbonaceous dust grain analogue surface....

متن کامل

Laboratory studies of the spectroscopy and physical behaviour of CO-containing interstellar ices

Context. High resolution observations of the 4.67 μm stretching vibration of solid CO towards low mass star forming regions show remarkably consistent trends in the component features of the CO ice band. Key questions arising from this analysis point towards the need for a chemical explanation of these phenomena. Aims. To understand and interpret observations of CO ice features by comparing the...

متن کامل

Wavelength resolved UV photodesorption and photochemistry of CO2 ice.

Over the last four years we have illustrated the potential of a novel wavelength-dependent approach in determining molecular processes at work in the photodesorption of interstellar ice analogs. This method, utilizing the unique beam characteristics of the vacuum UV beamline DESIRS at the French synchrotron facility SOLEIL has revealed an efficient indirect desorption mechanism that scales with...

متن کامل

Ice in space: surface science investigations of the thermal desorption of model interstellar ices on dust grain analogue surfaces.

More than 140 different molecules have been identified in the interstellar medium (ISM) to date. Dust grain particles are also found in the ISM, and some of these molecules freeze out at the cold temperatures (10-20 K) to form molecular ices. Understanding the adsorption and desorption of these ices is crucially important in understanding the processes that lead to star and planet formation, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007